• Zheng Z, Hey S, Jubery T, Liu T, Yang Y, Coffey L, Miao C, Sigmon B, Schnable JC, Hochholdinger F, Ganapathysubramanian B, Schnable PS (2020). Shared genetic control of root system architecture between Zea mays and Sorghum bicolor. Plant Physiology doi: 10.1104/pp.19.00752
  • Gaillard M, Benes B, Schnable JC, Miao C (2020). Sorghum Segmentation by Skeleton Extraction. CVPPP 2020 Sorghum Segmentation by Skeleton Extraction
  • Raju SKK, Thompson AM, Schnable JC (2020). Advances in plant phenomics: From data and algorithms to biological insights. Applications in Plant Sciences doi: 10.1002/aps3.11386
  • Atefi A, Ge Y, Pitla S, Schnable JC (2020). Robotic detection and grasp of maize and sorghum: stem measurement with contact. Robotics doi: 10.3390/robotics9030058
  • Gaillard M, Miao C, Schnable JC, Benes B (2020). Voxel carving based 3D reconstruction of sorghum identifies genetic determinants of radiation interception efficiency. Plant Direct doi: 10.1002/pld3.255
  • Wang R, Qiu Y, Zhou Y, Liang Z, Schnable JC (2020). A high-throughput phenotyping pipeline for image processing and functional growth curve analysis. Plant Phenomics doi: 10.34133/2020/7481687
  • Miao C, Xu Y, Liu S, Schnable PS, Schnable JC (2020). Increased power and accuracy of causal locus identification in time-series genome-wide association in sorghum. Plant Physiology doi: 10.1104/pp.20.00277
  • Adams J, Qiu Y, Xu Y, Schnable JC (2020). Plant segmentation by supervised machine learning methods. The Plant Phenome Journal doi: 10.1002/ppj2.20001
  • Raju SKK, Atkins M, Enerson A, Carvalho DS, Studer AJ, Ganapathysubramanian B, Schnable PS, Schnable JC (2020). Leaf Angle eXtractor - A high throughput image processing framework for leaf angle measurement in maize and sorghum. Applications in Plant Sciences doi: 10.1002/aps3.11385
  • Miao C, Pages A, Xu Z, Rodene E, Yang J, Schnable JC ( (2020). Semantic segmentation of sorghum using hyperspectral data identifies genetic associations. Plant Phenomics doi: 10.34133/2020/4216373
  • Ali MA, Wang X, Chen Y, Jiao Y, Mahal NK, Satyanarayana M, Castellano MJ, Schnable JC, Schnable PS, Dong L (2019). Continuous Monitoring of Soil Nitrate Using a Miniature Sensor with Poly (3-octyl-thiophene) and Molybdenum Disulfide Nanocomposite. ACS Applied Materials & Interfaces doi: 10.1021/acsami.9b07120
  • Ge Y, Atefi A, Zhang H, Miao C, Ramamurthy RK, Sigmon B, Yang J, Schnable JC ( (2019). High-throughput analysis of leaf physiological and chemical traits with VIS-NIR-SWIR spectroscopy: A case study with a maize diversity panel. Plant Methods doi: 10.1186/s13007-019-0450-8
  • Atefi A, Ge Y, Pitla S, Schnable JC (2019). In vivo human-like robotic phenotyping of leaf traits in maize and sorghum. Computers and Electronics in Agriculture doi: 10.1016/j.compag.2019.104854
  • Bai G, Ge Y, Scoby D, Leavit B, Irmak S, Graef G, Schnable JC, Awada T. (2019). NU-Spidercam: A large-scale, cable-driven, integrated sensing and robotic system for precision phenotyping, remote sensing, and agronomic research. Computers and Electronics in Agriculture doi: 10.1016/j.compag.2019.03.009
  • Sruti Das Choudhury, Jin-Gang Yu, Ashok Samala (2018). Leaf Recognition Using Contour Unwrapping and Apex Alignment with Tuned Random Subspace Method. Biosystems Engineering https://doi.org/10.1016/j.biosystemseng.2018.04.001
  • Sruti Das Choudhury, Srinidhi Bashyam, Yumou Qiu, Ashok Samal, Tala Awada (2018). Holistic and component plant phenotyping using temporal image sequence. Plant Methods doi.org/10.1186/s13007-018-0303-x
  • S. D. Choudhury, S. Bashyam, V. Stoerger, A. Samal (2018). Leaf Tracking based on Multi-view Image Sequence Analysis for Plant Phenotyping. IEEE Transactions on Image Processing under review
  • D. Jarquin, R. Howard, A. Xavier, S. D. Choudhury (2018). Increasing Predictive Ability by Modeling Interactions between Environments, Genotype and Canopy Coverage Image Data for Soybeans. Agronomy doi.org/10.3390/agronomy8040051
  • Yuhang Xu, Yumou Qiu, James Schnable (2018). Functional Modeling of Plant Growth Dynamics. The Plant Phenome Journal doi:10.2135/tppj2017.09.0007
  • Kira M. Veley, Jeffrey C. Berry, Sarah J. Fentress, Daniel P. Schachtman, Ivan Baxter, Rebecca Bart
    (2017). High-Throughput Profiling Identifies Resource Use Efficient And Abiotic Stress Tolerant Sorghum Varieties. Plant Direct https://onlinelibrary.wiley.com/doi/abs/10.1002/pld3.23
  • Gitelson A, Gamon JA, Solovchenko A (2017). Multiple drivers of seasonal change in PRI: Implications for photosynthesis. 1. Leaf level. Remote Sensing of Environment https://doi.org/10.1016/j.rse.2016.12.014
  • Gitelson A, Gamon JA, Solovchenko A (2017). Multiple drivers of seasonal change in PRI: Implications for photosynthesis. 2. Stand level. Remote Sensing of Environment http://dx.doi.org/10.1016/j.rse.2016.12.015
  • Piyush Pandey, Yufeng Ge, Vincent Stoerger and James C. Schnable (2017). High Throughput In vivo Analysis of Plant Leaf Chemical Properties Using Hyperspectral Imaging. Front. Plant Sci., 03 August 2017 https://doi.org/10.3389/fpls.2017.01348
  • S. D. Choudhury, S. Goswami, S. Bashyam, A. Samal and T. Awada. (2017). Automated Stem Angle Determination for Temporal Plant Phenotyping Analysis. Proceedings, ICCV workshop on Computer Vision Problems in Plant Phenotyping (CVPPP). Venice, Italy thecvf.com
  • Matthew Newman (2017). Design and Experimentation of Cable-Driven Platform Stabilization and Control Systems. 2017. MS Thesis, Mechanical Engineering and Applied Mechanics. University of Nebraska-Lincoln DigitalCommons@University of Nebraska - Lincoln
  • Matthew Newman, Arthur Zygielbaum, Benjamin Terry. (2017). Static Analysis and Dimensional Optimization of a Cable-Driven Parallel Robot. Cable-Driven Parallel Robots pp. 152-166 https://link.springer.com/chapter/10.1007/978-3-319-61431-1_14
  • Zhikai Liang, Piyush Pandey, Vincent Stoerger, Yuhang Xu, Yumou Qiu, Yufeng Ge, James Schnable (2017). Conventional and hyperspectral time-series imaging of maize lines widely used in field trials. GigaScience https://doi.org/10.1101/169045
  • Yufeng Ge, Piyush Pandey, Geng Bai (2016). Estimating fresh biomass of maize plants from their RGB images in greenhouse phenotyping. Proc. SPIE 9866, Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping, 986605 (17 May 2016) https://doi.org/10.1117/12.2228790
  • Choudhury SD, Stoerger V, Samal A, Schnable JC, Liang Z, Yu J. (2016). Automated vegetative stage phenotyping analysis of maize plants using visible light images. KDD: Data Science for Food, Energy, and Water http://www.schnablelab.org
  • Yufeng Ge, Geng Bai, Vincent Stoerger, James C.Schnable (2016). Temporal dynamics of maize plant growth, water use, and plant water content using automated high throughput RGB and hyperspectral imaging. Computers and Electronics in Agriculture https://doi.org/10.1016/j.compag.2016.07.028
  • Bai G, Ge Y, Hussain W, Baenziger PS, Graef G. (2016). A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding. Computers and Electronics in Agriculture https://doi.org/10.1016/j.compag.2016.08.021
  • Nguy-Robertson, A., Buckley, E.M., Suyker, A.S., Awada, T. (2016). Determining factors that impact the calibration of consumer-grade digital cameras used for vegetation analysis. International Journal of Remote Sensing https://doi.org/10.1080/01431161.2016.1199061
  • Geng Bai, Yufeng Ge, Sarah Blecha, Harkamal Walia, James E Specht (2015). Phenotyping transgenic wheat in a greenhouse through multispectral and thermal imaging. ASABE Annual International Meeting doi:10.13031/aim.20152189448