Our Research

Our Research

We promote innovative research in the area of plant phenotyping across multiple scales (i.e., from the growth chamber and greenhouse to the field), using the LemnaTec and/or Spidercam® phenotyping platforms to advance research in this area and address important research questions related to food security and the environment. The ability to accurately quantify plant phenotypic traits across multiple scales and their responses to the environment is essential in breeding, genetic, and physiological research to better understand genotype by environment interactions.


Faculty work in an interdisciplinary integrated teams (e.g., computational, statistics, biology, breeding, physiology, engineering expertise or any combination thereof) that emphasize the use of the LemnaTec and/or Spidercam® systems; contribute to improving existing, and developing new innovative and robust tools and algorithms for image and phenotypic data acquisition and analysis; and/or studies focusing on translating and scaling research from greenhouse to field or vice versa.

High density setaria planting at the Beadle Center greenhouses

Recent Publications

Raju SKK, Atkins M, Enerson A, Carvalho DS, Studer AJ, Ganapathysubramanian B, Schnable PS, Schnable JC (2020). Leaf Angle eXtractor - A high throughput image processing framework for leaf angle measurement in maize and sorghum. Applications in Plant Sciences doi: 10.1002/aps3.11385

Miao C, Pages A, Xu Z, Rodene E, Yang J, Schnable JC ( (2020). Semantic segmentation of sorghum using hyperspectral data identifies genetic associations. Plant Phenomics doi: 10.34133/2020/4216373

Zheng Z, Hey S, Jubery T, Liu T, Yang Y, Coffey L, Miao C, Sigmon B, Schnable JC, Hochholdinger F, Ganapathysubramanian B, Schnable PS (2020). Shared genetic control of root system architecture between Zea mays and Sorghum bicolor. Plant Physiology doi: 10.1104/pp.19.00752

Gaillard M, Benes B, Schnable JC, Miao C (2020). Sorghum Segmentation by Skeleton Extraction. CVPPP 2020 Sorghum Segmentation by Skeleton Extraction